यदि `3\sqrt\frac{1-a}{a}+9=19-3\sqrt\frac{a}{1-a}` है तो a का मान क्या है ?
Solve-
`3\sqrt\frac{1-a}{a}+3\sqrt\frac{a}{1-a}= 19-9`
`3\sqrt\frac{1-a}{a}+3\sqrt\frac{a}{1-a}= 19-9`
`3(\sqrt\frac{1-a}{a}+\sqrt\frac{a}{1-a})=10`
`\sqrt\frac{1-a}{a}+\sqrt\frac{a}{1-a}=\frac{10}{3}`........................(1)
Now we let
Then
` \sqrt\frac{a}{1-a}= \frac{1}{y}`
Put the above value in Equcation No. (1) we have
`y+\frac{1}{y}=\frac{10}{3}`
`\frac{y^2+1}{y}= \frac{10}{3}`
`3y^2+3=10y`
`3y^2-10y+3=0`
`3y^2-9y-y+3=0`
`3y(y-3)-( y-3 )=0`
`(y-3)(3y-1)=0`
Here `(y-3)= 0`
Then `y=3`
& `(3y-1)=0`
`3y=1`
`y=\frac{1}{3}`
Putting the Real Value of `y` then we have----
`y=3` & `y = \frac{1}{3}`
`\sqrt\frac{1-a}{a}=3` &`\sqrt\frac{1-a}{a}=\frac{1}{3}`
On Squaring bothsides we have
`\frac{1-a}{a}=9` &` \frac{1-a}{a}=\frac{1}{9}`
`1-a= 9a` & `9-9a= a`
`10a=1` & `10a=9`
`a=\frac{1}{10} ` & `a=\frac{9}{10}`
Thanks For Visit Our Website - Studypanal.in
`
`
Tags
Mathematics