Q. यदि x+y+z=6 , xyz=-10 तथा x2+y2+z2=30 है , तो x3+y3+z3 का मान क्या होगा ?
Solution by Studypanal.in
solve- we know that
Solved by Studypanal
(x3+y3+z3)-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)
(x3+y3+z3)=(x+y+z)(x2+y2+z2-xy-yz-zx)+3xyz
first of all we have to find xy-yz-zx
x+y+z=6
On Squaring bothsides we have
(x+y+z)2=(x2+y2+z2+2xy+2yz+2zx)
(6)2=30+2(xy+yz+zx)
36=30+2(xy+yz+zx)
36-.30=2(xy+yz+zx)
6=2(xy+yz+zx)
(xy+yz+zx)=3
Now,
(x3+y3+z3)=(x+y+z)(x2+y2+z2-xy-yz-zx)+3xyz
(x3+y3+z3)=6×(30-3)+3×-10
(x3+y3+z3)=6 ×27-30
(x3+y3+z3)=162-30
(x3+y3+z3)=132
thanks for visit our websites
Tags
Mathematics