Q. यदि `x+y+z=6` , `xyz= -10` तथा `x^2+y^2+z^2 = 30` है , तो `x^3 +y^3+z^3` का मान क्या होगा ?

 Q. यदि  `x+y+z=6` , `xyz= -10` तथा  `x^2+y^2+z^2 = 30` है , तो   `x^3 +y^3+z^3` का मान क्या होगा ?

Solution by Studypanal.in

solve-  we know that 




Solved by Studypanal 

 `(x^3+y^3+z^3)-3xyz = (x+y+z) ( x^2+y^2+z^2-xy-yz-zx)`

           `(x^3+y^3+z^3) = (x+y+z) ( x^2+y^2+z^2-xy-yz-zx)+3xyz`

first of all we have to find `xy-yz-zx`

           `x+y+z=6`

On Squaring bothsides we have 

         `(x+y+z)^2 = ( x^2+y^2+z^2 + 2xy +2yz+2zx )`

         `(6)^2 = 30 + 2 ( xy + yz +zx )`

           `36 = 30 + 2 ( xy + yz + zx )`

           `36-.30 = 2 ( xy + yz + zx )`

           `6 = 2 ( xy + yz + zx )`

       ` ( xy + yz + zx )= 3`

Now,

 `(x^3+y^3+z^3) = (x+y+z) ( x^2+y^2+z^2-xy-yz-zx)+3xyz`

    `(x^3+y^3+z^3) = 6\times (30-3) + 3\times -10`

       `(x^3+y^3+z^3)= 6  \times27 -30 `

 `(x^3+y^3+z^3) = 162-30`

 `(x^3+y^3+z^3)= 132` 

thanks for visit our websites 


StudyPanal

My name Study Panal . I am a Graduate and website developer & and write a blog post on google page

Post a Comment

Previous Post Next Post

Contact Form